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Problem Statement 

In financial world, the market behaves differently when it is in “good” state or “bad” state. One 
key difference is the average market return can be higher in a good state and lower in the bad 

state. Another difference is that the market volatility, which can be represented by the volatility 
of SP500 index, varies by states. Usually, when the market is doing badly, the volatility will be 

higher than it is doing better. Acknowledging which states we are in is important to all market 
participants such as financial institutes and investors, since it was not only a signal to what the 
market will behave, but the mean return predicted by state will have an impact on market 

confidence, interest rate and other asset’s returns while the volatility predicted by state also can 
be used for VIX (CBOE volatility index) pricing, option pricing and so on. In this project, we are 

going to use Hidden Markov Model to analyze which state the market is in and trying to obtain 
the mean return and volatility of each state.  
 

Data Source 

The data we will use is the SP500 index from Jan 1st, 1990 to Dec 31st, 2015, which can be 

obtained from Yahoo Finance. When pricing option, another input is the risk free rate. We can 
use the 6 months Treasury bill and it can be obtained from US. Department of Treasury. 
 

 
figure1: S&P500 Index 

 



Methodology 

1. Hidden Markov Model 

In hidden Markov model, the system is assumed to be a Markov process with hidden states. The 
underlying states are unobserved and follow Markov chain process with certain transition 

probability. Observations are dependent on the hidden states and visible. 

 
Graph 1: Hidden Markov Model 

Graph 1 shows the process of hidden Markov model with S being the hidden states and y being 
the observations. 
 

2. Black-Scholes Formula 
In Black-Scholes model, stock prices follow geometric Brownian Motion. The price process of the 

underlying stock is  �� = �଴exp⁡[ቆ� − �ଶʹቇ � + ���] 
where �� is the stock price at time t, �଴ is the initial stock price, μ is the drift, σ is the volatility 

and �� is the Brownian Motion. Taking logarithm on both sides of the equation above we get logሺ��ሻ = logሺ�଴ሻ + ቆ� − �ଶʹቇ � + ��� 
The logarithm of stock price at time t follows the normal distribution with expectation � logሺ��ሻ =logሺ�଴ሻ + ሺ� − �ଶ/ʹሻ�. The volatility of stock price σ and the drift μ are assumed to remain constant 

across time in Black-Scholes model. However, in reality, they will change with the overall 

conditions of the stock market. Combined with the Markov chain of economic situation, Black-
Scholes model is modified to be Markov Black-Scholes model, which can accommodate the 

change in states of the underlying financial assets. 
 
3. Forward-Backward Algorithm 

The forward-backward algorithm is developed to compute the posterior marginal of the hidden 
state variables based on observations. Since the parameters of the Markov Black-Scholes model 

including the drift μ, the volatility σ and the transition probability P are unknown, we apply 
forward-backward algorithm, which can help to estimate these parameters. The algorithm has 

two passes, in which the forward probability and backward probability are calculated respectively. 
The forward probability is represented as  ߙ௞ሺ�ሻ = ℙሺ ଵܱ, … , ܱ� , �ܫ = ݇ሻ 
and backward probability is represented as ߚ௞ሺ�ሻ = ℙሺܱ�+ଵ, … , ்ܱ , �ܫ = ݇ሻ 
where ௝ܱ is the observation at time j and ܫ௝ stands for the state of the underlying stock at time j. 
The forward probability ߙ௞ሺ�ሻ and backward probability ߚ௞ሺ�ሻ can be calculated in a recursive way. 
Imposing the probabilities into likelihood functions and transition equations,  �௞ሺ�ሻ = ℙሺ�� = ݇|ܱሻ = ௞ሺ�ሻℙሺܱሻߚ௞ሺ�ሻߙ ∝  ௞ሺ�ሻߚ௞ሺ�ሻߙ



௞,௟ሺ�ሻܪ = ℙሺ�� = ݇, ��+ଵ = ݈|ܱሻ = �௟ሺߚ௞ሺ�ሻܽ௞,௟ܾ௟ሺܱ�+ଵሻߙ + ͳሻℙሺܱሻ  

where ܽ௞,௟ is the probability of transiting from state k to state l and ܾ௟ሺܱ�+ଵሻ is the probability of 

observation ܱ�+ଵ given state l. Then we can get the estimates of parameters in the normal 
distribution and the transition matrix P. 

 
4. Viterbi Algorithm in Hidden Markov Model 

The Viterbi algorithm is used to find the most likely sequence of the hidden states based on a 
series of observations in hidden Markov model. In this algorithm, the maximum likelihood 
estimation procedure is implemented in a recursive way, which makes it efficient to calculate the 

corresponding probabilities. In each step, the algorithm incorporates one more observation in 
the data series and the complexity is Oሺktሻ if the total number of states is k. The recursive 

process is shown as below. ℙሺ�଴, �ଵ…�் , ଵܱ…்ܱሻ = ⁡ℙሺ�଴ሻℙሺ�ଵ…�் , ଵܱ…்ܱ|�଴ሻ = �ௌబℙሺ�ଵ, ଵܱ|�଴ሻℙሺ�ଶ…�் , ܱଶ…்ܱ|�ଵ, ଵܱ, �଴ሻ = ⋯ = �ௌబ{Π௜=ଵ் ܽௌ�−భ,ௌ�ܾሺ ௜ܱ|�௜ሻ} 
At each iteration, the formula has the similar form and the likelihood function finally becomes a 

product of T terms by induction.  
Taking logarithm on both sides of the equation above, we can simplify it into logℙሺ�଴, �ଵ…�் , ଵܱ…்ܱሻ = ݈���ௌబ + Σ௜=ଵ் ሺ݈��ܽௌ�−భ,ௌ� + ݈��ܾሺ ௜ܱ|�௜ሻ 
By this transformation, the maximum likelihood problem is converted into the shortest path 
problem. We can adopt Dijkstra’s algorithm or Bellman-Ford algorithm to find the shortest path, 
which is also the most likely sequence of the hidden states. 

 
Preprocess and Assumptions 

1. Data Preprocess: 
Returns on S&P500 market index are calculated from the historical data from 1990 to 2015 by 
simple holding period return method ��−ଵ = ⁡ �ܲ − �ܲ−ଵ�ܲ−ଵ  

where r is the return and P represents the price of the market index. Returns calculated are 

monthly returns and needed to be transformed into annual returns in final results generally. 
 

2. States of Market 
Two states are considered in the equity market. In the good state, companies are usually able to 
make profit and have plenty of chances to expand their business. Therefore, the average return 

is expected to be high with relatively low volatility. In the opposite, average return should be low 
and volatility will increase in the bad time.  

 
Evaluation and Final Results 

1. Average Return and Volatility of S&P500 

Applying the forward-backward method to maximize the likelihood function, we get the 
estimates of the average returns and corresponding volatilities in both good and bad economic 

states. 

Table1: Average Return and Volatility in Different States 

S&P500 Index Good State Bad State 

Average Return 0.0202 -0.0135 

Volatility of Return 0.0268 0.0257 



The returns and volatilities can be used to determine the prices of various derivatives and to 
identify arbitrage opportunities. 

 
2. Transition between States 

The transition matrix represents the probabilities by which the market will transit into another 
state or stay the same. It is given by the algorithm as below 
 

States Good Bad 

Good 0.6894 0.3106 

Bad 0.4156 0.5844 

Table2: Transition Matrix 

The transition probabilities shown above is roughly accordant with the market performance. It is 
more likely that the good state will persist than the bad one. 
 

3. Path of Economic States 
According to the Viterbi Algorithm, we uncover the hidden states of the market every month. 

From the path we can find that there are clusters of good states and bad states in different time 
period. For example, in dot-com bubble crisis and 2008 financial crisis, most of the states are 
bad.  

 
Figure2: Good vs Bad States                Figure3: Good States with S&P500 Return 

Figure 2 demonstrates the percentage of good states and bad states every year. Figure 3 shows 

the percentage of good states along with the average return of S&P500. They move in the same 
trend, indicating that the algorithm works correctly. 
 

Conclusion 

From our analysis, this HMM model is useful in replicating the real trend of the market to some 

extent. Firstly, when looking at the percentage of good months in a year predicted by this model, 
we can find it follows the trend of averaged return of that specific year. From the perspective of 
transition probability, when we are in the good state, there is an approximately 70% chance to 

stay in the good state; while in bad state, half of the chance the market will be better in the 
following year. It is similar to the business cycle in many research papers. More importantly, we 

figure out there is a significant difference between the mean returns of the market in good 
states and bad states, which is the same as what we experience in the real situation. This model, 
however, has a limited ability to distinguish the volatilities. According to our result, both the 

good and bad states have a similar volatility in Gaussian model, but the true standard deviation 
is around 0.0368 in good state and 0.0535 in bad state. Additionally, there are many 

assumptions in HMM model, which might not be true in the real world. For example, the HMM 
model assumes the state of next period does not depend on how long the current state we were 



in. It is not true under general business cycle. Another example might be the state might not be 
just good or bad but can have many possibilities. In other words, each time interval might in a 

unique state. Thus, further study, for example, using the state space model, should be followed 
to remove those assumptions. 

 

Further Study with Hidden State Space Model and Kalman Filter 

Hidden Markov Model and State Space Model are similar in the sense that they all have the 

underlying hidden process which determines the series of observations. The difference is that in 
Hidden Markov Model, the underlying process have certain number of states and the transition 

probabilities are determined. However, in State Space Model, the underlying state variable 
changes continuously over time and follows the stochastic process. To estimate the parameters 
under state space model, we need to adopt the Kalman Filtering technique.  

In the further study, we decide to apply the state space model to the stochastic commodity 
pricing models and estimate the parameters using Kalman Filtering method. 

 

 
 


